DR Congo
DR Congo: Scenario Comparisons

Blessing Chipanda
Chart 20 presents a stacked area graph on the contribution of each scenario to GDP per capita. The cumulative impact of better education, health, infrastructure, leapfrogging, etc. means an additional benefit in the integrated model that we refer to as the synergistic effect. The synergistic effect of all the scenarios on the GDP per capita is about US$1,593.

The Manufacturing scenario will have the largest impact, increasing GDP per capita by US$283 relative to the Current Path forecast for that year. The second and third largest impact on the GDP per capita will come from the Governance and AfCFTA scenarios, respectively. Each of these two scenarios will increase GDP per capita by US$207 and US$176, respectively. Given the continuous decline in aid flows, the Financial Flows scenario will have the least impact, increasing DR Congo’s GDP per capita by US$60 relative to the Current Path forecast in 2043.

In the short to medium term, the Agriculture scenario will have the greatest positive impact on the GDP per capita, taking it to US$1,809 in 2035, an increase of US$83 relative to the Current Path forecast in that year. The second and third largest impact on GDP per capita in 2035 will come from the Manufacturing and Infrastructure scenarios, respectively. In these two scenarios, GDP per capita will increase by US$70 and US$57 (respectively), relative to the Current Path forecast in 2035.
Chart 21 presents the impact of each scenario on extreme poverty by 2043. The user can select the number of extremely poor people or per cent of the population.

DR Congo is not on track to achieve the SDG goal of eliminating extreme poverty by 2030. In the Current Path forecast, by 2030, 65.7% of the Congolese people (equivalent to about 84.1 million) will be living in extreme poverty using US$2.15 at 2017 prices. The Combined scenario will reduce extreme poverty in DR Congo to 62.7% of the population—a reduction of about 3 percentage points relative to the Current Path forecast in 2030. The Agriculture scenario will have the largest impact in reducing extreme poverty, followed by the manufacturing and infrastructure scenarios by 2030. At the lower end, the AfCFTA scenario results in a modest increase in extreme poverty by about 0.5 percentage points relative to the Current Path forecast in 2030.

The Combined scenario shows that a policy push across all the development sectors is necessary to achieve sustained growth and development in DR Congo.

In the Combined scenario, by 2043 the extreme poverty figure for DR Congo will be reduced to 6.6% of the population (11.2 million people), 36.9 million people fewer people (or 19.6% of the population) relative to the Current Path forecast. The Manufacturing, Governance and Education scenarios (respectively) will have the largest impact on lifting the Congolese out of extreme poverty at US$2.15 a day by 2043. Only in the Manufacturing scenario, about 12.3 million (6.7%) Congolese will be lifted out of extreme poverty relative to the Current Path forecast by 2043.
Chart 22 compares the size of the economy in the Current Path with the Combined scenario at market exchange rates (MER).

The Combined scenario dramatically impacts the expansion of the Congolese economy (GDP). By 2043, the size of the economy will expand to US$449.8 billion compared to US$259.8 in the Current Path forecast in the same year—a 73.1% increase relative to the Current Path forecast.

The Combined scenario shows the transformative power of a comprehensive policy push across all development sectors in achieving sustained growth in DR Congo.

Chart 23 presents the change in the economy's structure, comparing the Current Path forecast with the Combined
In the Combined scenario, the material, manufacturing and agriculture sectors (respectively) will positively contribute to DR Congo’s GDP relative to the Current Path forecast by 2043. The material sector contribution to GDP will increase by 4.3%, to 30% of GDP. This will translate into an increase in GDP of US$68.2 billion attributable only to the materials sector in 2043 above the Current Path forecast.

Since the service sector is much larger than any other, it will contribute an additional US$48.8 billion to GDP relative to the Current Path forecast in 2043. However, its contribution to GDP will decline from the 2043 Current Path forecast of about 38% to 32.8% in the Combined scenario. DR Congo’s energy sector will contribute the least in 2043, about US$4.4 billion relative to the Current Path forecast in 2024, however, a decline in the share contribution to GDP of 0.6 percentage points compared to the Current Path of 2.6% of GDP.

Chart 24 presents the size of the informal sector as a share of GDP and the size of the informal labour force. Data on the contribution of the informal sector is often estimated and should be treated with care. There are several definitions of an informal economy, but it is generally considered to be a set of economic activities that are not subject to taxation and other regulations.

The informality rate in DR Congo is one of the highest in the world. The size of DR Congo’s informal sector was estimated at 41.8% of GDP (equivalent to US$20.7) in 2022—the largest among the low-income African countries and the third largest in Africa after Zimbabwe (54.5%) and Tanzania (45.6%).

In the Current Path forecast, in 2043 the size of the informal sector will reduce to about 33% of GDP (but increase in value to US$61.9 billion). However, in the Combined scenario, the informal sector as a percentage of GDP will be reduced to 23.5% in 2043. This is a reduction of 9.5 percentage points of GDP relative to the Current Path forecast.
Chart 25 compares life expectancy in the Current Path forecast with the Combined scenario.

In 1960, the average female born in DR Congo could expect to live 42.5 years, while the average male could expect to live 39.6 years. The average total life expectancy was 41.1 years. Since then, life expectancy in DR Congo has improved by 21.3 years for females to 63.7 years and by 21.7 years for males to 61.3 years. In 2022, total life expectancy in DR Congo was estimated at 62.5 years, which was 0.9 years below the average of low-income African countries. In the Current Path forecast, life expectancy in DR Congo will improve to 68.1 years in 2043. In the Combined scenario, however, it will improve to 69.7 years. This will be just 0.1 years below the average of low-income African countries, which will be 69.8 years by 2043.

Chart 26 compares the Gini coefficient in the Current Path forecast with the Combined scenario.
Inequality in DR Congo, using the Gini coefficient index, is historically slightly higher than the average for low-income African countries and significantly higher than the average for Africa. Civil wars and general instability have exacerbated inequality across DR Congo and in 2022 it had a Gini index of 0.42.

In the Current Path forecast, inequality in DR Congo will decrease slightly to about 0.4 in 2043. In comparison, the Combined scenario will reduce inequality in DR Congo by 17.2% relative to the Current Path forecast to 0.32 in 2043.

The materialisation of the Combined scenario would stimulate high economic growth and significantly reduce poverty in DR Congo, but the cost in terms of environmental degradation will be a challenge. To mitigate the environmental impact of the Combined scenario, its implementation should be accompanied by concrete steps to accelerate the green energy transition.

Chart 27 compares carbon emissions in the Current Path forecast with the Combined scenario.

The Combined scenario significantly impacts carbon emissions, albeit from a very low base. In the Current Path forecast, DR Congo’s carbon emissions will increase from about 2 million tons in 2022 to 25 million tons by 2043. The Combined scenario will increase carbon emissions by 5 million tons relative to the Current Path forecast in 2043.
DR Congo has abundant and varied energy resources such as hydroelectricity, biomass, solar, wind and fossil fuels. For instance, the country possesses a huge potential of hydroelectric power estimated at 100 GW, which represents about 13% of the world’s hydroelectric potential. The country also has a potential estimated at 70 GW for solar and 15 GW for wind power. In sum, DR Congo can become a leading exporter of electricity in Africa.

Paradoxically, DR Congo has one of the largest deficits in energy access and one of the lowest rates of electrification in the world. The energy supply is largely insufficient for the country’s needs and energy consumption comes mainly from biomass. Only 3% is generated by hydroelectric power, the rest is from charcoal and firewood.

The increased economic activity in the Combined scenario will cause elevated energy demand and altered energy production. Chart 28 compares energy demand and production in the Current Path forecast with the Combined scenario. Production is done in six types, namely oil, gas, coal, hydro, nuclear and other renewables. The data is converted into million barrels of oil equivalent (MBOE) to allow for comparisons between different sources. Note that energy production could be for domestic use or export.

DR Congo relies on imported hydrocarbon energy to meet its domestic energy demand. In 2022, the country’s energy production was estimated at about 64 million barrels of oil equivalent, creating an unmet demand of about five million barrels of oil equivalent. On the Current Path, by 2043 DR Congo’s energy production will increase to 232 million barrels of oil equivalent and unmet demand will increase to 137 million barrels oil equivalent, pointing to a future of ongoing energy import dependence. In 2043, DR Congo will import 35.7% of its energy requirements in the Current Path forecast. The Combined scenario will increase production to 321 million barrels of oil equivalent and reduce energy import requirements by 2.8 percentage points relative to the Current Path forecast. The contribution of renewable energy will increase from 56.8% (Current Path forecast) to 66.9% of total energy production in 2043.

The positive shift towards sustainability, with the contribution of renewable energy, suggests a potential pathway for DR Congo to enhance energy security and reduce dependency on imports by embracing renewable sources.
Donors and sponsors

Reuse our work

• All visualizations, data, and text produced by African Futures are completely open access under the Creative Commons BY license. You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited.

• The data produced by third parties and made available by African Futures is subject to the license terms from the original third-party authors. We will always indicate the original source of the data in our documentation, so you should always check the license of any such third-party data before use and redistribution.

• All of our charts can be embedded in any site.

Cite this research

About the authors

Dr Blessing Chipanda joined the African Futures and Innovation (AFI) programme in January 2023. Before joining the ISS he worked as an assistant lecturer/research assistant at the University of Pretoria, Department of Economics. He is particularly interested in tasks within the wider realm of international trade, development economics, public policy, monetary policy, and econometric modelling. Equally interested in economic and socio-economic activities that impact social welfare. Blessing has a PhD in economics from the University of Pretoria, South Africa.

About African Futures & Innovation

Scenarios and forecasting can help Africa identify and respond to opportunities and threats. The work of the African Futures & Innovation (AFI) program at the Institute for Security Studies aims to understand and address a widening gap between indices of wellbeing in Africa and elsewhere in the world. The AFI helps stakeholders understand likely future developments. Research findings and their policy implications are widely disseminated, often in collaboration with in-country partners. Forecasting tools inspire debate and provide insights into possible trajectories that inform planning, prioritisation and effective resource allocation. Africa’s future depends on today’s choices and actions by governments and their non-governmental and international partners. The AFI provides empirical data that informs short- and medium-term decisions with long-term implications. The AFI enhances Africa’s capacity to prepare for and respond to future challenges. The program is headed by Dr Jakkie Cilliers.